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Abstract

Structural deterioration often occurs without visible manifestation[ Continuum damage mechanics "CDM#
enables one to predict the state of damage in such situations and to estimate residual strength:service life of
an existing structure[ The accumulation of damage is modeled as a dissipative process that is governed by
the laws of thermodynamics[ The rate of dissipation in a deformable system\ R\ depends on the work done
on the system and the evolution of the Helmholtz free energy\ C[ Under certain thermodynamical conditions\
the _rst variation of C vanishes\ and partial di}erential equations for damage growth in R prior to damage
localization are obtained[ This approach obviates the need of introducing arbitrary dissipation potential
functions with undetermined constants in the damage growth equations[ All solutions use only readily
available material parameters[ Assuming that damage occurs isotropically under uniaxial loading\ closed!
form solutions are obtained for ductile damage as a function of plastic strain\ for creep damage as a function
of time and for fatigue damage as function of number of cycles[ The models are validated with published
laboratory data[ Þ 0887 Elsevier Science Ltd[ All rights reserved[
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0[ Introduction

Deterioration of a structure may occur in a variety of ways depending on its operating environ!
ment and service loading conditions[ Examples of such deterioration include gross inelastic defor!
mation\ high!temperature creep and fatigue[ The deleterious e}ects of these processes may\ depend!
ing on the initial condition and service history\ accumulate without any discernible manifestation
"like the formation of a macroscopic crack# for a major portion of the service life[ Existing
models for assessing structural deterioration generally require either a measurable ~aw "e[g[\ ParisÐ
Erdogan law in fatigue crack growth# or a prior estimate of failure time "e[g[\ Miner|s rule in
fatigue# to be useful\ and are generally unable to provide an estimate of residual strength of a
degrading structure[ Several state variable approaches to measuring damage have been proposed
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in the literature[ These methods variously de_ne damage as\ "i# changes in the dynamic response
of the structure "DiPasquale and Cakmak\ 0878 ^ Agbabian et al[\ 0880 ^ Hearn and Testa\ 0880#\
"ii# fraction of elastic springs fractured in an idealized material "Krajcinovic and Silva\ 0871 ^
Breysse\ 0889 ^ Kandarpa et al[\ 0885#\ "iii# the time!dependent cumulative failure probability
"Diao\ 0884#\ and "iv# changes in the acoustic emission intensity "Fang and Berkovits\ 0884#[
These methods usually lack a strong micromechanical and thermodynamical framework in their
formulations[ Moreover\ such models also are largely empirical in nature[ The irreversible and
dissipative nature of damage accumulation can be more suitably modeled in the context of
continuum damage mechanics using thermodynamic principles "Hansen and Schreyer\ 0883#[

0[0[ Basic concepts of CDM

Continuum damage mechanics "CDM# de_nes damage in terms of the material microstructure
"Krajcinovic\ 0873 ^ Simo and Ju\ 0876 ^ Hult\ 0876#\ and relates the state of damage in a structural
component to globally measurable quantities*for example\ its elastic modulus and Poisson|s
ratio[ CDM makes it feasible to estimate the state of damage in the seemingly {defect!free| stage[
It also enables one to predict the e}ects of di}erent damage!causing processes using one uni_ed
method\ and to determine the residual strength or remaining service!life of an existing structure[

In CDM\ the damage\ D"n
¼
#\ on an elemental cross!sectional plane "identi_ed by the normal

vector n
¼
# is quanti_ed by the surface density of cracks and cavities at that section\weighted by their

average stress!raising e}ects "Lemaitre\ 0874#[ If\ however\ damage can be considered the same
regardless of the orientation of the cross!section on which it is measured\ then damage is isotropic\
and is quanti_ed by one single scalar variable\ D\ a dimensionless number between zero and one[
Damage will be considered isotropic in this paper[

The constitutive law for damaged materials is commonly derived from the principle of strain
equivalence\ which states "Chaboche\ 0877 ^ Kachanov\ 0875 ^ Lemaitre\ 0874# ] a damaged volume
of material under the nominal stress s shows the same strain response as a comparable undamaged
volume under the e}ective stress s

½
\ de_ned as

s
½
�

s

0−D
"0#

s being the nominal stress[ Applying this principle to the elastic strain tensor\ the damaged modulus
of elasticity\ E

	
\ can be related to the isotropic damage variable as\

E
	

� E"0−D# "1#

where E is the modulus of elasticity for undamaged material and it is implicitly assumed that the
Poisson|s ratio remains una}ected by damage "de Vree et al[\ 0884#[ Equation "1# provides a means
to estimate the state of damage in a deformable material by experimentally determining its reduced
modulus of elasticity by one of several non!destructive methods\ e[g[\ a direct tension test\ or a
measurement of ultrasonic pulse velocity or change in electrical resistivity "Lemaitre\ 0881#[

0[1[ Failure criteria

In CDM\ failure occurs when the damage variable equals the critical damageDc ¾ 0 ^ exper!
imental data typically indicate values of Dc ranging between 9[04 and 9[74 "Lemaitre\ 0881#[ In the
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context of CDM\ {failure| is not necessarily fracture\ but is the point at which the essential
assumption of damage mechanics*namely\ damage arising out of a volume!wide degradation of
the material microstructure*ceases to be applicable[ In other words\ {failure|\ is that point when
the damage!causing process becomes localized and leads to the growth of a dominant defect
"Chaboche\ 0877#[ In slow ductile deformation\ Dc is interpreted as the value of damage cor!
responding to the onset of rupture[ In fatigue or creep\ it is associated with initiation of a
macroscopic crack "Lemaitre\ 0873 ^ Pasic\ 0881 ^ Dhar et al[\ 0885\ Chow and Wei\ 0880#[ The
postulate that Dc is an intrinsic material property "see\ for example\ Chow and Wei\ 0880# provides
a tool to predict the time to failure in a complex loading situation by using the value of Dc obtained
from a simple static tension test for the same material and temperature[

1[ Existing CDM models of damage growth

Existing CDM!based approaches to modeling of damage growth can be broadly grouped into
one of two categories ]

"i# Postulating phenomenological or {kinetic equations| of damage growth ]

D
þ

� f"D\ x ^ v# "2#

where x is the set of internal variables "e[g[\ strain# and v denotes material parameters[ The
pioneering work of Kachanov "0847# proposed the kinetic equation of damage growth under
uniaxial tension "applicable to brittle fracture and creep# as ]

dD

dt
� A 0

s

0−D1
n

^ D � 9\ t � 9 "3#

where s is the nominal applied stress\ A × 9\ n − 0 are material constants[ This approach sub!
sequently was used\ among others\ by Jun and Xing "0884#\ Carmeliet and Hens "0883# and Paas
et al[ "0882#[

"ii# Postulating thermodynamic potential functions and di}erentiating them in order to obtain
the damage growth rate ]

f � f"Y\ x
¾
^ v# ^ D

þ
� −

1f

1Y
"4#

where Y is the damage energy release rate[ For example\ Lemaitre|s "0874# dissipation potential
function and the resultant damage growth rate in uniaxial ductile deformation are

f �
S

a¦0 0
−Y

S 1
a¦0

o
¾
p "5#

D
þ

� 0
K1

1ES
o1:M
p 1

a

o
¾
p "6#

where S and a are material and temperature dependent constants\ op is the plastic strain\ E is the
elasticity modulus\ K\ M are RambergÐOsgood hardening parameters and the initial condition is
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D � 9\ op ¾ o9[ Similar thermodynamic potential functions have been adopted by Chow and Wei
"0880#\ Chaboche "0877#\ Hansen and Schreyer "0883#\ Tie!Jun "0881# and Woo and Li 0881#[

Both approaches described above introduce unknown material constants in the damage growth
equations which may be di.cult\ if not impossible\ to estimate numerically[ The proliferation of
undetermined material parameters has also been criticized by Krajcinovic and Mastilovic "0884#[
The unknown constants and the arbitrariness associated with the choice of the kinetic equations
or the thermodynamic potential functions also pose an impediment to the use of damage mechanics
in modeling structural deterioration[

2[ Thermodynamic framework for damage accumulation

Consider a system R "de_ned by the closed boundary 1R# in contact with a heat reservoir whose
"constant# absolute temperature is u[ Let W be the work done on R\ and let U and KE be the
system|s internal and kinetic energies\ respectively[ The rate of heat ~ow into the system from the
surrounding reservoir is Q

þ
and the increase in the entropy of R occurs at the rate of S

þ
\ the dots

indicating di}erentiation with respect to time t[ The second law of thermodynamics requires that
the rate of increase of entropy of the universe "the system and the reservoir# must be positive ]

S
þ
−

Q
þ

u
− 9 "7#

The Helmholtz free energy\ C � U−uS\ is a function of the absolute temperature\ the damage
variable\ and a set of variables\ x "to be de_ned subsequently#\

C � C"u\ x\ D# "8#

The nature of x depends on the degree of detail necessary to de_ne the free energy[ The second
law inequality "7# can be written with the help of the _rst law "which states K

þ
E¦U

þ
� Q

þ
¦W

þ
# and

the free energy as ]

−K
þ

E−C
þ

−u
¾
S¦W

þ
− 9 "09#

which can be expressed by di}erentiating eqn "8# and by noting that u
¾
� 9 ]

−K
þ

E¦W
þ

−
1C
1x

= x
¾
−

1C
1D

= D
þ

0 G − 9 "00#

The process is reversible "Prigogine\ 0856# if the dissipation rate\ G\ is zero[ It can be veri_ed that
for a body which is not undergoing deformation and not accumulating damage "i[e[\ x

¾
� 9\ D

þ
� 9#\

a reversible process implies G � W
þ

−K
þ

E � 9 ^ in words\ reversible "non!frictional# work done on
this body is fully converted to kinetic energy\ a well!known fact in mechanics[

Let us now specify R as a deformable body in contact with a heat reservoir at constant
temperature[ The set of variables x in the free energy ðeqn "8#Ł then is the symmetric strain tensor
oij\ de_ned by oij �"0:1#"ui\j¦uj\i#\ where ui is the deformation at a point "i\ j � 0\ 1\ 2#\ and ui\j

refers to its partial derivative with respect to the j displacement[ The velocity and acceleration at
the point are denoted by u

¾
i and ai\ respectively[ The strain rate tensor is\ o

¾
ij �"0:1#"u

¾
i\j¦u

¾
j\i#[ The
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stress tensor\ sij � 1c:1oij\ is the partial derivative of the free energy per unit volume\ c � 1C:1V\
with regard to the strain tensor "Maugin\ 0881#[

A system in diathermal contact with a heat reservoir is in a state of equilibrium if the _rst
variation of its Helmholtz Free Energy is zero "McLellan\ 0879# ]

dC � 9 "01#

The work done on a system in a dissipative process at constant temperature\ minus the increase in
kinetic energy\ is greater than the increase in the Helmholtz free energy "Sears and Salinger\ 0864#[
Therefore\

dC � dWnk−dWd ^ dWd − 9 "02#

where Wnk and Wd denote the non!kinetic work and the dissipation in the above process\ respec!
tively[ The variation in the free energy at an arbitrary instant t1 can be written as ðintegrating eqn
"02#Ł

dC"t1# � dC"t0#¦d g
t1

t0

"W
þ

−K
þ

E# dt−d g
t1

t0

G dt "03#

where the energy dissipation is assumed to be given by eqn "00# and the initial state is assumed to
be one of thermodynamic equilibrium ði[e[\ dC"t0# � 9Ł[ The variation dC"t1# is in general a
function

dC"t1# � `"u\ oij\ D\ du
¾
\ do

¾
ij\ dD

þ
\ [ [ [ ^ t#\ t $ ðt0\ t1Ł "04#

which depends on the state of the system as well as on the choice of the variations in temperature\
strain rate\ damage and other terms\ and is generally non!zero for an irreversible process or for a
system yet to achieve equilibrium[ However\ damage growth prior to localization of defects is
assumed to occur slowly and close to equilibrium\ and the function `"=# is assumed to vanish for a
suitable set of variations[ Under this assumption "to be validated later by comparing the accuracy
of the resulting models with experimental data#\ we can write ðusing eqn "00#Ł ]

dC"t1# � d g
t1

t0

"W
þ

−K
þ

E# dt−d g
t1

t0
0W

þ
−K

þ
E−

1C
1oij

o
¾
ij−

1C
1D

D
þ

1 dt ¹ 9 "05#

Equation "05# can be rearranged as ]

dC"t1# � d g
t1

t0
0W

þ
−K

þ
E¦

1C
1D

D
þ

1 dt−d g
t1

t0
0W

þ
−K

þ
E−

1C
1oij

o
¾
ij1 dt "06#

� g
t1

t0

dI0"t# dt−g
t1

t0

dI1"t# dt ¹ 9 "07#

where I0 and I1 refer to the two integrands in eqn "06# and the commutability of integration and
variation has been used[

Let us consider dI1 _rst[ Body forces Fi"t# and boundary traction Ti"t# perform work on the system
acting through the displacement _eld ui"t# on R and 1R0\ respectively\ where 1R � 1R0 k 1R1 such
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that displacements on only 1R1 are speci_ed at all time in ðt0\ t1Ł[ The instantaneous variation in
I1"t# caused by a su.ciently small variation du

¾
i"t# in the velocity _eld "consistent with the above

boundary condition# which does not alter the instantaneous force\ acceleration and stress dis!
tributions\ is

dI1 � gR

Fidu
¾

i dV¦g1R0

Tidu
¾

i dh−gR

raidu
¾

i dV−gR

sijdu
¾

i\ j dV "08#

where use has been made of the symmetry of the stress tensor "Bhattacharya\ 0886#[ Upon
integration by parts\ applying Green|s theorem and noting that du

¾
i is identically zero on 1R1\ eqn

"08# becomes\

dI1 � gR

"Fi¦sij\j−rai#du
¾

i dV¦g1R0

"Ti−sijnj#du
¾

i dh "19#

The expressions in parentheses in eqn "19# are each zero as they constitute the equilibrium equations
of a deformable body "damaged or otherwise# on R and 1R0\ respectively "Krajcinovic and
Sumarac\ 0876#[ Thus\ the second integral in eqn "07# is zero[

Consequently\ the _rst integral in eqn "07# must also vanish[ We assume that its integrand is
stationary at every time instant ]

dI0"t# � d 0W
þ

"t#−K
þ

E"t#¦
1C"t#

1D
D
þ

"t#1� 9 "10#

Let us suppose that the damage variable can be expressed as a function of the strain tensor[ We
apply a set of variations to the velocity _eld with the same boundary conditions as before\ which
are small enough not to alter the instantaneous force\ acceleration and strain distributions of the
body\ and do not a}ect the rate of change in the free energy\ cD � 1c:1D\ at that instant[ Noting
that dD

þ
� d"dD#:dt and dD �"1D:1oij#doij\ eqn "10# becomes

dI0"t# � gR

Fidu
¾

i dV¦g1R0

Tidu
¾

i dh−gR

raidu
¾

i dV¦gR

1c

1D

1D

1oij

do
¾
ij dV � 9 "11#

Proceeding similarly as in eqns "08#Ð"19#\ we arrive at the set of coupled partial di}erential
equations\

Fi−rai−0cD

1D

1oij1\j

� 9 on R "12#

Ti¦cD

1D

1oij

nj � 9 on 1R0 "13#

The solutions to eqns "12# and "13# may be computationally di.cult for a body subjected to
multiaxial straining[ However\ mechanical properties of engineering materials and experimental
damage growth data usually are available for uniaxial loading[ Thus\ the uniaxial counterpart of
eqn "13# "developed in the following#\ which can accommodate di}erent damage!causing processes
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and is amenable to closed!form solutions\ is useful for validating theoretical models and for
developing insights into structural damage growth[

3[ Isotropic damage growth under uniaxial loading

For damage growth under uniaxial loading due to a far!_eld stress\ s�\ acting normal to the
surface\ eqn "13# simpli_es to the ordinary di}erential equation ]

dD

do
� −

s�

cD

"14#

If the strain rate\ o
¾
\ is known\ damage growth can be expressed as function of time ]

dD

dt
� −

s�

cD

o
¾
"D\ t# "15#

Equation "14# or "15# are the basic equations of isotropic damage growth for ductile deformation\
creep and fatigue[ The free energy per unit volume\ c\ depends on the constitutive model of the
material and the particular loading mode in question ^ its general form\ in the absence of inertial
e}ects\ is

c � g sij doij−g"D# "16#

The partial derivative\ cD\ is computed holding the temperature and strain constant ðcf eqn "8#Ł[
The term g in eqn "16# is the surface energy of voids and discontinuities that arise due to damage
growth per unit volume[ The increment in strain do in general has three additive constituents ] the
instantaneous elastic and plastic strains\ and the time!dependent creep strain[ The constitutive
models will be described individually in the following subsections for ductile deformation\ creep
and fatigue[ The surface energy\ which is common to all three\ can be obtained under the following
set of idealizations[

Consistent with the notion of isotropic damage\ micro!defects within the damaged material are
assumed to be spherical voids "of di}erent sizes# which are distributed uniformly in space within
the material volume[ Consider a representative volume element\ V9 �"3:2#pu2\ in the shape of a
sphere of radius u[ Suppose there are n voids present in V9\ and ai is the radius of the ith void
"i $ ð0\ nŁ#[ If D is the isotropic damage on some cross!section of area S9 within this volume\ then\
ignoring stress!ampli_cation\ the net surface area of defects on that cross!section is DS9[ If n is
large\ which can be ensured by a suitable choice of u\ the volume of defects present in the sphere
V9 can be found by simple integration as "3:2#pu2D\ which is also equal to the sum of the individual
void volumes\ Sn

i�0 "3:2#pa2
i [ This gives

D �
0

u2
s
n

i�0

a2
i "17#

If the forceÐdisplacement relation at the microscale is linear\ and a void is formed when the stress
on its impending boundary equals the local failure stress sc\ the energy required to form the ith
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void is Pi � Ðh "0:1#scv dh where dh is an elemental void boundary and v is the extension normal
to the initial circular plane which _nally expands to the spherical void[ The surface energy required
per unit growth of void surface area is 1P:1h ^ summing over all the n voids\

g �
scSn

i�0 pa2
i

V9

�
scSn

i�0 pa2
i

3

2
pu2

"18#

which\ with the help of eqn "17# becomes g �"2:3#scD[
It is assumed that sc is of the same order as the true fracture strength\ sf "a more readily available

material property# and in the sequel\ g is evaluated as

g �
2

3
sfD "29#

Equation "29# is a simple way of estimating the surface energy of formation of voids in terms of
readily obtained quantities\ pending availability of more accurate information regarding the
number\ shapes\ sizes and interaction of the voids as a function of time[

3[0[ Ductile deformation dama`e

The constitutive law for material behavior under uniaxial monotonic loading is described by the
RambergÐOsgood model\ applied to the e}ective stressÐactual strain relationship ]
o �"s

½
:E#¦"s

½
:K#M where the total strain "o# is the sum of its elastic "oe# and plastic "op# components ^

E is the undamaged elastic modulus\ K is the undamaged strain hardening modulus and M is the
hardening exponent[ In general\ damage initiates only after the accumulation of a threshold plastic
strain\ o9 "Lemaitre\ 0874#[ The _rst term in eqn "16# takes the form "Bhattacharya and Ellingwood\
0885a# ]

g
o

9

s do? � g
oe9

9

Eo?e do?e¦g
oe

oe9

E"0−D#o?e do?e¦g
o9

9

Ko?0:M
p do?p¦g

op

o9

K"0−D#o?0:M
p do?p "20#

here the principle of strain equivalence has been applied to the elastic and plastic strains separately
"with the assumption that the exponent m is not a}ected by damage#\ and oe9 is the elastic strain
that corresponds to the plastic strain o9\ in consequence of applying the RambergÐOsgood law[

Subtracting eqn "29# from eqn "20#\ and using eqn "16#\

cD � −
K1

1E
ðo1:M

p −o1:M
9 Ł−

K

0¦
0

M

ðo0¦"0:M#
p −o0¦"0:M#

9 Ł−
2

3
sf "21#

which is a function of the plastic\ rather than the total\ strain[ The rate of damage growth with
respect to the plastic strain can be written as ðusing eqn "14#Ł\

dD

dop

� −
s�

cD

do

dop

"22#

where s� is given by K"0−D#o"0:M#
p using the principle of strain equivalence[
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Equation "22# must be solved numerically[ An approximate closed!form solution to eqn "22#
can be obtained by noting that do:dop � 0¦doe:dop is practically equal to 0 at all o of interest in
ductile damage accumulation "Bhattacharya\ 0886#\ and that K:"1E# ½ 9 for most engineering
alloys ]

D � 0−
C1

o0¦"0:M#
p ¦C0

"23#

with the initial condition D � 9 at op � o9[ The constants\

C0 �
2

3 00¦
0

M1
sf

K
−o0¦"0:M#

9 "24#

C1 � C0¦o0¦"0:M#
9 "25#

It is emphasized that C0 and C1 are not undetermined material constants\ but are functions of
widely available monotonic stressÐstrain parameters[ The value of the threshold plastic strain\ o9\
is close to zero for most engineering materials "o9 ¾ 9[91 for _ve alloys reported in Lemaitre\ 0874#
and in the absence of other information it may conservatively be taken to be zero[

For most metals and alloys\ the non!dimensional material constant\ C0\ is greater than the
plastic strain range of interest "up to the fracture ductility\ of# and for such situations\ eqn "23#
may be simpli_ed to

D � 0−
C1

C0

¦
C1

C1
0

o0¦"0:M#
p ^ C0 × o0¦"0:M#

p \ op × o9 "26#

For those materials\ which possess a marked ductility in the post!yielding zone "i[e[\ for those with
large M# the above equation may be further simpli_ed into a linear relation between damage and
plastic strain ]

D � 0−
C1

C0

¦
C1

C1
0

op ^ C0 × op\ M : � "27#

Equation "26# is of a similar algebraic form as Lemaitre|s "0874# solution for uniaxial ductile
damage ]

D � Dc 0
o"1a¦M#:M
p −o"1a¦M#:M

9

o"1a¦M#:M
f −o"1a¦M:M#

9 1 ^ op − o9 "28#

which contains an unknown material parameter\ a\ and requires a prior estimation of the failure
condition "of\ Dc# to be useful[ The simpli_cation of the present model for highly ductile materials
ðeqn "27#Ł also is comparable to Lemaitre|s "0874# linear approximation obtained under the same
assumption ]

D � Dc 0
op−o9

of−o91 ^ op − o9\ M : � "39#

Unlike the proposed model\ however\ eqn "39# cannot be used to predict failure[
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Examples

Table 0 lists mechanical properties of _ve materials[ Of these\ the _rst four materials are used
to validate the ductile damage growth model[ The properties of SAE 3239 steel will be used later
in the analysis of fatigue damage[

Figure 0 compares the ductile damage growth predicted from eqn "22# and its closed!form
simpli_cations with published experimental results for SAE 0924 steel "Lemaitre\ 0874#[ The
approximate closed!form solution ðeqn "23#Ł is virtually identical to that of the original di}erential
eqn "22#\ and their agreement with the experimental data is quite accurate[ The two additional
simpli_cations of eqn "23#\ i[e[\ eqns "26# and "27#\ are also plotted in the _gure to show the extent
of errors involved[ Figure 1 compares the predicted ductile damage growth ðeqn "23#Ł in 1913!T2
aluminum alloy with experimental results from three di}erent sources[ Some variability can be
observed in the data from three di}erent sources for the same nominal grade of material\ however\
the prediction ðeqn "23#Ł lies within the experimental scatter[ The mean damage function from the
statistical analyses of data from Woo and Li "0882# is used in the present comparison ^ their
estimate of the scatter in ductile damage growth has been used in a recent stochastic formulation
of damage growth "Bhattacharya and Ellingwood\ 0885b#[

The experimentally observed critical damage and failure strain "of# for four materials are listed
in Table 1 along with their sources ^ these sources\ however\ did not report tensile properties of the
specimens used[ The corresponding Dc predicted by eqn "23# at op � of\ using parameters from
Table 0\ is presented in the last column[ The quality of the agreement with experimental results
achieved using independently obtained material properties indicates the validity of the proposed
model[ The predicted Dc for SAE 3239 steel could not be veri_ed experimentally[

The strain\ op\ was selected as the independent variable "instead of time# in the preceding
development mainly to conform to the experimental data used in the validation ^ the time!dependent
nature of ductile damage growth could be depicted as well by starting with eqn "15#[ It should also
be noted that\ unlike many of the existing methods\ knowledge of the critical damage and failure
time "or strain# is not required in the present model[ Rather\ the Dc obtained using one set of

Table 0

Monotonic material properties at room temperature

Treatment E K M sf

Material Source and condition Form GPa MPa MPa

SAE 0924 Le Roy et al[ "0870# Austentized and Round tensile 079 760 2[3 0199

quenched

1913 Al Hansen and T2 × 63[4 579 4[4 324

Schreyer "0883#

SAE 3029 Boller and Seeger Tempered and Hourglass 110 0006 04[8 0581

"0876# quenched

INCO 607 Boyer "0876# Heat!treated Sheet 196 0324 12[7 0201

SE 3239 steel Endo and Morrow Quenched:tempered Hourglass 082[1 0590 04[1 0800

"0858#
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Fig[ 0[ Monotonic damage growth in SAE 0924 steel[

material data can be used to predict failure times under di}erent loading conditions for the same
material and temperature[

3[1[ Creep dama`e

The principle of strain equivalence\ applied to creep "strain rate#\ may be written as follows ] a
damaged volume of material under the applied stress s shows the same creep strain rate as a
comparable undamaged volume under the e}ective stress s

½
[ The BaileyÐNorton power law "Dow!

ling\ 0882# describing creep straining under constant applied stress\ s\ at constant temperature u

can then be written as

o
¾
cr � As

½mtf "30#

where o
¾
cr � creep strain rate\ and A\ m\ f are empirical temperature!dependent constants[

At constant!stress creep\ the time!independent elastic and plastic components of strain remain
constant "i[e[\ do � docr#\ and consequently\ eqn "16# can be written as\

c � g
ocr

9

s do?cr−g � s�ocr−
2

3
sfD "31#

where s� is the constant far _eld applied stress acting normal to the surface[ Hence\
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Fig[ 1[ Monotonic damage growth in 1913!T2 aluminum[

Table 1

Experimental and predicted Dc in ductile damage

Experimental

Predicted Dc

Material Source o9 of Dc ðeqn "23#Ł

SAE 0924 steel "AFNOR Lemaitre "0874# 9 9[45 9[11 9[15

XC 27#

1913!T2 Al "AU3G0# Lemaitre "0874# 9[91 9[14 9[12 9[14

Chow and Wang "0876# 9 9[21 9[11

Woo and Li "0882# 9[9973 "mean# 9[14 "max# 9[11 "mean#

SAE 3029 steel Lemaitre "0874# 9[91 9[26 9[13 9[11

INCO 607 Lemaitre "0874# 9[91 9[18 9[13 9[15

SAE 3239 Endo and Morrow "0858# * 9[73 * 9[35

cD � −
2

3
sf "32#

Equation "15# for uniaxial constant stress creep damage growth is\ therefore\

dD

dt
�

3

2

s�

sf

o
¾
cr �

3

2

Afsm¦0
�

sf "0−D#m
tf−0 "33#
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where eqns "30# and "0# have been used[ For steady!state creep "f � 0#\ the growth rate simpli_es
to

dD

dt
� B 0

s0¦"0:m#
�

0−D 1
m

"34#

where B �"3:2#A:sf is a temperature dependent material constant[ Equation "34# has almost the
same form as Kachanov|s kinetic equation ðeqn "3#Ł because the numerical values of m "usually
ranging between 3 and 01# renders the exponent of s� close to one[ The present method therefore
can derive from an analytical approach a long!established phenomenological model of creep
damage growth and provide estimates of the phenomenological parameters[

Integrating eqn "33#\ creep damage as a function of time is

D"t# � 0−ð"0−Dt9
#m¦0−"3:2#"A:sf#"m¦0#s0¦m

� "tf−tf9#Ł0:"0¦m# "35#

where t9 is the initial time[ The initial damage\ Dt9
\ is the result of the plastic deformation

introduced\ in addition to any pre!existing damage "D9#\ when the specimen is loaded from zero
to s� at the beginning of the creep straining[ Its value can be obtained by integrating eqn "22# to
op �"s�:K#M\ using the relevant initial condition ]

Dt9
� g

"s�:K#M

o9

dD

dop

do?p ^ D � D9 at o?p � o9 "36#

Assuming t9 � 9\ the time to failure is ]

tf � $
"0−Dt9

#m¦0−"0−Dc#
m¦0

"3:2#"A:sf#"m¦0#s0¦m
� %

0:f

"37#

If\ under steady state creep "f � 0#\ Dt9
can be neglected and m can be considered large enough to

make "0−Dc#
m¦0 ½ 9 "even when Dc � 0#\

D � 0−$0−
t

tf%
0:"0¦m#

"38#

which is identical to the form proposed by Kachanov "0875#[

Examples

Figure 2 compares the predicted damage growth in Superalloy IN 099 at 0999>C under constant
stress of 139 MPa\ with published experimental results from Lemaitre "0881# where the _rst
macrocrack "size not stated# is reported to develop at 89) of rupture time with Dc � 9[11[ Since
the creep law and tensile parameters for the specimen were not reported\ steady state creep "f � 0#\
virgin initial state "t9 � Dt9

� 9# and a representative value of m � 3 are assumed[ The accelerated
nature of creep damage growth is apparent in the _gure\ and the shape of the predicted curve
matches the experiment well[

Table 2 lists the creep law parameters at three di}erent temperatures for ASTM A25 steel from
two di}erent sources ^ the variability in material properties for a given nominal grade of material
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Fig[ 2[ Creep damage growth in IN 099 superalloy[

Table 2

Creep law parameters and tensile properties for ASTM A25 steel

Creep law parameters Tensile properties

From From Brockenbrough From Fields and Fields

Fields and Fields "0878# Harmathy "0856# and Johnston "0878#

"0857#

u A A sf E K

>C >F ksi\ h m f ksi\ h m f ksi 092 ksi ksi M

316 799 0[05×09−09 3[3 9[28 1[33×09−01 3[6 0 72 12[8 39[6 4[4

371 899 0[17×09−09 5[3 9[42 0[34×09−09 3[6 0 56 12[1 24[5 5[8

427 0999 2[63×09−09 5[1 9[57 3[82×09−8 3[6 0 43 11[4 15[4 8[0

is evident[ The tensile parameters at the three temperatures are also listed ^ these are used to
compute the initial creep damage\ Dt9

[ Using these parameters and assuming D9 � o9 � t9 � 9\
eqns "36# and "37# are solved to predict the stresses that cause failure in 0999\ 09\999 and 099\999
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Table 3

Failure stresses due to creep in ASTM A25 steel

Failure stress "ksi#

Predicted Experimental

tf u

A\ m\ f from A\ m\ f from Brockenbrough Brockenbrough

"hr# ">F#

Fields and Fields "0878# Harmathy "0856# and Merritt and Johnston

Dc � 9[1 Dc � 0[9 Dc � 9[1 Dc � 0[9 "0883# "0857#

0999 799 24[3 30[1 24[0 26[3 27[9 14[7

899 05[5 06[0 10[4 11[6 07[4 08[9

0999 02[0 02[4 00[2 01[9 8[4 00[6

09\999 799 23[6 28[0 17[5 29[3 13[7 10[9

899 03[0 03[4 03[4 04[3 01[3 02[7

0999 09[4 09[8 6[5 7[9 5[2 5[7

099\999 799 22[4 25[7 19[5 10[6 05[9 *

899 01[9 01[2 8[6 09[2 7[1 *

* 0999 7[4 7[6 4[0 4[3 3[1 *

h for each of the three di}erent temperatures\ which are shown in Table 3[ The critical damage for
A25 steel at the operating temperatures are unknown\ and two di}erent values "9[1 and 0[9# have
been assumed[ Table 3 also lists some experimental failure stresses from two di}erent sources for
the same nominal grade of material\ but for which parameters "A\ m\ f# are unknown[ The
agreement of the predicted failure stresses with the experimental results is better at shorter exposure
times[ Also\ it should be noted that the "A\ m\ f# from Fields and Fields "0878# pertain to test
durations of 05 h and less ^ the "A\ m\ f# from Harmathy "0856# "test durations unknown# better
predict the failure stresses[

Table 4 lists creep law parameters at 0099>F "482>C# and tensile properties at room temperature

Table 4

Creep and tensile properties for type 205 stainless steel

Creep law parameters "Garofalo et al[\ 0850#

Tensile parameters

sy sf E K M

"Davis\ "Davis\ "Davis\ "Boyer\ "Boyer\

u A test s 0883# 0883# 0883# 0876# 0876#

>C ">F# MPa\ h m f MPa MPa MPa GPa MPa

RT * * * * 164 484 082 780[3 3[11

482 "0099# 1[21×09−19 5[81 0 088Ð204 041 332[6 040[5 381[6 3[11
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Table 5

Experimental and predicted failure times in creep of type 205 stainless steel at 482>C "0099>F#

Predicted tf "h#

ðeqn "37#Ł Experimental "Garofalo et al[\ 0850#\ h

Dc t1 "secondary# tR "rupture#

s� Dt9

"MPa# ðeqn "36#Ł 9[1 0[9 min mean max min mean max

088 0[97×09−1 730 0921 859 0172 0849 0156 0638 1326

107 0[58×09−1 273 366 049 214 435 069 328 668

128 1[61×09−1 056 100 59 66 88 65 094 021

151 3[18×09−1 58 78 06 16 20 11 26 32

177 5[63×09−1 14 23 3 8[3 04 5[5 02[2 19[3

204 0[93×09−0 7 01 0[2 2[2 5[1 0[8 3[8 8[9

"RT# and 0099>F for type 205 stainless steel[ Table 5 lists creep test results for the same material
from Garofalo et al[ "0850# for six stress levels at 0099>F[ The wide scatter in t1 "time to end of
secondary stage# and in tR "time to rupture# is evident[ The predicted tf and the corresponding
Dt9

\ obtained by solving eqns "36# and "37# "using values from Table 4 and assuming
t � D9 � o9 � 9#\ are presented in Table 5 for each stress level[ As in Table 3\ two possible values
of the unknown Dc have been assumed "9[1 and 0[9#[ The CDM!based tf is\ by de_nition\ less than
tR and is believed to lie between t1 and tR\ but Garofalo et al[ "0850# did not list the time to the
occurrences of the _rst microcrack[ For lower stresses\ the predictions lie within the experimentally
observed range of values\ but the proposed model is prone to over!predict the time to failure for
higher stresses[ Due to the accelerated nature of creep damage growth\ the point of failure is not
very sensitive to the exact value of Dc[

3[2[ Fati`ue dama`e

Fatigue failure can occur "after a su.cient number of cycles# at load levels below the static
monotonic failure stress\ provided that the cyclic stress range exceeds the endurance limit[ With
each cycle\ additional damage is introduced in the material\ and the damage at the end of one cycle
acts as the initial damage for the damage increment in the next cycle ]

Di¦0 � Di¦DDi\ DDi − 9\ i � 0\ [ [ [ \ NI−0 "49#

where Di is the damage at the end of the ith cycle\ DDi is the damage increment during the ith cycle
and NI is the cycles to macroscopic crack initiation "localization#[ Crack initiation occurs when
the critical value for damage is reached ]

DNI−0 ³ Dc

DNI
− Dc "40#
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Fig[ 3[ StressÐstrain coordinates in hysteresis loop of cycle i[

In any given cycle "Fig[ 3#\ the unloading portion of a hysteresis loop and compressive stresses
are assumed not to contribute to damage[ Consequently\ only the reloading section above the
endurance limit\ Se\ in the positive stress region causes damage to increase "similar assumptions
regarding fatigue damage increment are also found in Kachanov\ 0875 ^ and Lemaitre\ 0873#[
Under these assumptions\ the equation of fatigue damage accumulation in the ith loading cycle
can be written as

dD

dDo
� 6

−"Ds�¦smin#:cD"Do# ^ Ds�¦smin − Se − 9\ o
¾ × 9

9 ^ otherwise
"41#

with the initial damage D � Di−0\ where Di−0 is the damage at the end of cycle i−0[ Do and Ds

are the cyclic strain and stress ranges\ respectively\ and "omin\ smin# are the lower loop!tip coordinates
in the oÐs system\ all of which may vary from cycle to cycle[ The free energy per unit volume for
the ith cycle\

c � g
Do

Do9i

"Ds¦smini
# dDo?−

2

3
sf "D−Di−0# "42#

is computed "analogous to that in ductile damage# using the RambergÐOsgood equation for the
hysteresis loop ] Do �"Ds

½
:E#¦1"Ds

½
:1K?#M?\ where Ds

½
is the e}ective stress range\ and K?\ M? are

the cyclic hardening modulus and the cyclic hardening exponent\ respectively[ The term Do9i
"Fig[

3# is the threshold plastic strain range of damage increment in cycle i "analogous to o9 in ductile
damage#[ Using the principle of strain equivalence\ assuming dD:dDo ¹ dD:dDop and K?:E ½ 9
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"which is valid for most engineering materials#\ the closed!form solution for fatigue damage
accumulated at the end of the ith cycle is "Bhattacharya\ 0886# ]

Di � 0−"0−Di−0#

0

0¦
0

M?

Do0¦"0:M?#
9i

−Do0:M?
p0i

Do9i
¦Ci

0

0¦
0

M?

Do0¦"0:M?#
pmi

−Do0:M?
p0i

Dopmi
¦Ci

"43#

where

Ci �
2

3

sf

K0

−
0

0¦
0

M?

Do0¦"0:M?#
9i

¦Do0:M?
p0i

Do9i
"44#

where K0 � 10−0:M?K?\ and the subscript p signi_es the plastic component of strain range[
The recursive nature of eqn "43# can be used to express damage at the end of n cycles in terms

of the initial damage\ D9 ]

Dn � 0−"0−D9# t
n

i�0

0

0¦
0

M?

Do0¦"0:M?#
9i

−Do0:M?
p0i

Do9i
¦Ci

0

0¦
0

M?

Do0¦"0:M?#
pmi

−Do0:M?
p0i

Dopmi
¦Ci

"45#

In the case of strain!controlled loading\ the strain ranges Dopmi
\ and Dop0i are independent of i\

giving the following simpli_cation ]

Dn � 0−"0−D9#

F

G

G

G

G

G

G

f

0

0¦
0

M?

Do0¦"0:M?#
p9 −Do0:M?

p0 Dop9¦C

0

0¦
0

M?

Do0¦"0:M?#
p −Do0:M?

p0 Dop¦C

J
n

G

G

G

G

G

G

j

"46#

The number of cycles to crack initiation can be predicted by eqn "45# ðor eqn "46#Ł using the
conditions "40#\ if Dc is known[ The subsequent propagation phase can be dealt with using fracture
mechanics "Dowling\ 0882#[

Examples

The cyclic material properties and crack growth law parameters used in the following fatigue
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Table 6

Tensile\ cyclic and crack growth properties

Paris law parameters

"Barsom and Rolfe\ 0876 ^

StressÐstrain parameters Dowling\ 0882#

E K? sf Se sy C

DKth Kc

MPa MPa

Material Source GPa MPa M? MPa MPa MPa mm:cycle m zm zm

A095 GrÐB steel Chopra et al[ 085[4 0883 6[63 428 209 290 5[8×09−8 2[9 5[9 55

"177>C in air# "0884#

SAE 3239 steel Endo and 081[8 0701 6[0 0800 431 0079 4[3×09−00 2[13 09 029

Morrow "0858#

analyses for two alloys of steel are listed in Table 6[ Figure 4 shows the results of fully!reversed
strain!controlled fatigue tests on A095!Grade B steel at 177>C in air[ The predicted NI\ obtained
by inverting eqn "46# and assuming Dc � 9[14 in eqn "40#\ compares well with test data on number
of cycles to initiation of a crack of length 9[07 mm "Majumdar et al[\ 0882#[ Figure 4 also plots
the predicted total fatigue life\ NT � NI¦NP\ and compares it with three sets of experimental

ss13925

Fig[ 4[ Fatigue damage growth in A095!Gr B steel at 177>C in air[
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results ] number of cycles "N14# to a 14) drop in the peak tensile stress\ which corresponds to a 2
mm crack and is quite close to rupture\ from "i# Chopra et al[ "0884# and "ii# Chopra "0885#\ and
"iii# the number of cycles to failure "Majumdar et al[\ 0882#[ The crack propagation life\ NP\ is
obtained by integrating the ParisÐErdogan law between the limits as �"0:p#"DKth:1Se#

1 and
af � 5[24 mm\ subject to the condition Kmax ¾ min"Kc\ zEsydT#\ where dT � 9[93 mm "Barsom
and Rolfe\ 0876#[ The predicted NT lies within the experimental scatter[

Figure 5 compares the predicted NI and NT curves with experimental results on fully reversed
strain!controlled fatigue of quenched and tempered SAE 3239 steel[ The cyclic loading properties
"Table 6# are taken from Endo and Morrow "0858# and the number of cycles to failure are taken
from Topper and Morrow "0869# which refers to the same set of tests[ The predicted NI ðeqns "40#
and "46#Ł\ obtained assuming Dc � 9[35 "cf Table 1# agrees very well with the observed cycles to
crack initiation "Dowling\ 0882# which corresponds to the development of a 9[927 mm crack[
However it should be noted that the steel in Dowling "0882#\ though of the same nominal grade\
has di}erent material properties "like yield and ultimate strengths# from the steel in Endo and
Morrow "0858#[ Figure 5 also presents the predicted NT curve\ which exhibits good agreement
with experimental results "Topper and Morrow\ 0869#[ NP is obtained with the help of the ParisÐ
Erdogan law\ modi_ed to include crack!tip plasticity e}ects and subject to the same limits and
conditions as above "Bhattacharya\ 0886#[

The proposed model\ as seen from Figs 4 and 5\ is able to project the general trend in strain!
controlled fatigue behavior described by the Co.nÐManson law "Dowling\ 0882# ] in low!cycle

ss13926

Fig[ 5[ Fatigue damage growth in SAE 3239 steel at room temperature in air[
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fatigue\ the crack initiation period is negligible and most of the fatigue life is spent in crack
propagation ^ while in high cycle fatigue\ most of the life is taken up by crack initiation[

4[ Conclusion

Structural deterioration under di}erent modes of behavior has been modeled from basic prin!
ciples of mechanics and thermodynamics[ Assuming isotropic damage occurring close to equi!
librium at constant temperature in the pre!localization stage\ and idealizing discontinuities as
uniformly distributed spherical voids inside a given volume\ the present method is able to reproduce
the phenomenological model of Kachanov " for creep#\ as well as the dissipation potential model
of Lemaitre " for ductile ~ow#[ No arbitrary material constants have been introduced in the present
formulation ^ rather\ care has been taken to ensure that only well!documented material constants
enter the equations[

Ductile damage predictions match published experimental data rather well[ An expanded dat!
abase of the critical damage parameters for di}erent materials and temperatures would be desirable
for further validation of the proposed creep damage growth model[ Predictions for fatigue crack
initiation agree with the notion that critical damage occurs with localization of defects[ Preliminary
investigations by the authors have indicated that the proposed approach also can capture load!
sequencing e}ects under variable amplitude loading\ which otherwise can only be accounted for
empirically in selected cases[ This will be the subject of a future publication[

Finally\ structural damage growth is essentially a random phenomenon\ which is evident from
the scatter in the di}erent sets of experimental results in this paper[ The deterministic methods of
modeling structural damage growth described here can therefore predict only the central tendency
"mean or median# of the random damage growth[ Knowledge of damage uncertainty is of singular
importance in estimating safety of a degrading structure[ Extensions of the present formulation
into the stochastic domain are underway "Bhattacharya and Ellingwood\ 0885b#[
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